Monday, March 16, 2015
Isotropic Linearly Elastic Solid
Isotropic Linearly Elastic Solid denotes the type of solid material which mechanical properties are the same regardless of directions.
We had the linearity with respect to ${{e}_{i}}$
\[{{T}_{ij}}={{C}_{ijkl}}{{E}_{kl}}\]
and with respect to ${{{e}'}_{i}}$
\[{{{T}'}_{ij}}={{{C}'}_{ijkl}}{{{E}'}_{kl}}\]
For this material, it is obligated that
\[{{C}_{ijkl}}={{{C}'}_{ijkl}}\]
under all orthogonal transformations of basis (e.g. rotation). For example $I$, the identity matrix, can do this job in any catrtesian coordinate. Also its multiplication with scalar does the job. For isotropic fourth-order tensor, we use the form of identity sencond-order tensor, ${{\delta }_{ij}}$ , multipy to three new isotropic fourth-order tensors
\[\begin{align}
& {{A}_{ijkl}}={{\delta }_{ij}}{{\delta }_{kl}} \\
& {{B}_{ijkl}}={{\delta }_{ik}}{{\delta }_{jl}} \\
& {{H}_{ijkl}}={{\delta }_{il}}{{\delta }_{jk}} \\
& \\
\end{align}\]
Therefore, the isotropic ${{C}_{ijkl}}$ could be defined as
\[\begin{align}
& {{C}_{ijkl}}=\lambda {{A}_{ijkl}}+\alpha {{B}_{ijkl}}+\beta {{H}_{ijkl}} \\
& \\
\end{align}\]
where $\beta$, $\lambda$, and $\alpha$ are constants. Then it becomes
\[{{T}_{ij}}={{C}_{ijkl}}{{E}_{kl}}=\lambda {{\delta }_{ij}}{{\delta }_{kl}}{{E}_{kl}}+\alpha {{\delta }_{ik}}{{\delta }_{jl}}{{E}_{kl}} +\beta {{\delta }_{il}}{{\delta }_{jk}}{{E}_{kl}}\]
Thus,
\[\begin{align}
& {{T}_{ij}}=\lambda {{E}_{kk}}{{\delta }_{ij}}+(\alpha +\beta ){{E}_{kl}} \\
& \\
\end{align}\]
denoting $(\alpha +\beta )$ by $2\mu $ , we have
\[{{T}_{ij}}=\lambda e{{\delta }_{ij}}+2\mu {{E}_{kl}}\]
where
\[e\equiv {{E}_{kk}}\]
denotes the dilation . Therefore,
\[T=\lambda eI+2\mu E\]
In detail, it says
\[\begin{align}
& {{T}_{11}}=\lambda ({{E}_{11}}+{{E}_{22}}+{{E}_{33}})+2\mu {{E}_{11}} \\
& {{T}_{22}}=\lambda ({{E}_{11}}+{{E}_{22}}+{{E}_{33}})+2\mu {{E}_{22}} \\
& {{T}_{33}}=\lambda ({{E}_{11}}+{{E}_{22}}+{{E}_{33}})+2\mu {{E}_{33}} \\
& {{T}_{12}}=2\mu {{E}_{12}} \\
& {{T}_{13}}=2\mu {{E}_{13}} \\
& {{T}_{23}}=2\mu {{E}_{23}} \\
& \\
\end{align}\]
resource: ISBN: 978-0-7506-8560-3
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment