Tuesday, March 17, 2015
Strain Tensor
There are mainly two types of strain tensors; Lagrange Strain Tensor and Infinitesimal Strain Tensor which
denote $\nabla u$, the gradient of displacement $u$
Lagrange Strain Tensor is defined by
\[\begin{align}
& {{E}^{*}}=\frac{1}{2}[\nabla u+{{(\nabla u)}^{T}}+{{(\nabla u)}^{T}}(\nabla u)] \\
& \\
\end{align}\]
and Infinitesimal Strain Tensor is defined by
\[\begin{align}
& {{E}}=\frac{1}{2}[\nabla u+{{(\nabla u)}^{T}}] \\
& \\
\end{align}\]
which is the strain tensor assuming for small deformation
where its component
\[\begin{align}
& {{E}_{ij}}=\frac{1}{2}(\frac{\partial {{u}_{i}}}{\partial {{X}_{j}}}+\frac{\partial {{u}_{j}}}{\partial {{X}_{i}}}) \\
& \\
\end{align}\]
Therefore, the Lagrange Strain Tensor for
a) rectangular coordinates:
\[\begin{align}
& [E]=\left[ \begin{matrix}
\frac{\partial {{u}_{1}}}{\partial {{X}_{1}}} & \frac{1}{2}(\frac{\partial {{u}_{1}}}{\partial {{X}_{2}}}+\frac{\partial {{u}_{2}}}{\partial {{X}_{1}}}) & \frac{1}{2}(\frac{\partial {{u}_{1}}}{\partial {{X}_{3}}}+\frac{\partial {{u}_{3}}}{\partial {{X}_{1}}}) \\
\frac{1}{2}(\frac{\partial {{u}_{2}}}{\partial {{X}_{1}}}+\frac{\partial {{u}_{1}}}{\partial {{X}_{2}}}) & \frac{\partial {{u}_{2}}}{\partial {{X}_{2}}} & \frac{1}{2}(\frac{\partial {{u}_{2}}}{\partial {{X}_{3}}}+\frac{\partial {{u}_{3}}}{\partial {{X}_{2}}}) \\
\frac{1}{2}(\frac{\partial {{u}_{3}}}{\partial {{X}_{1}}}+\frac{\partial {{u}_{1}}}{\partial {{X}_{3}}}) & \frac{1}{2}(\frac{\partial {{u}_{3}}}{\partial {{X}_{2}}}+\frac{\partial {{u}_{2}}}{\partial {{X}_{3}}}) & \frac{\partial {{u}_{3}}}{\partial {{X}_{3}}} \\
\end{matrix} \right] \\
& \\
\end{align}\]
b) cylindrical coordinates:
\[\begin{align}
& [E]=\left[ \begin{matrix}
\frac{\partial {{u}_{r}}}{\partial r} & \frac{1}{2}(\frac{1}{r}\frac{\partial {{u}_{r}}}{\partial \theta }-\frac{{{u}_{\theta }}}{r}+\frac{\partial {{u}_{\theta }}}{\partial r}) & \frac{1}{2}(\frac{\partial {{u}_{r}}}{\partial z}+\frac{\partial {{u}_{z}}}{\partial r}) \\
\frac{1}{2}(\frac{1}{r}\frac{\partial {{u}_{r}}}{\partial \theta }-\frac{{{u}_{\theta }}}{r}+\frac{\partial {{u}_{\theta }}}{\partial r}) & \frac{1}{r}\frac{\partial {{u}_{\theta }}}{\partial \theta }+\frac{{{u}_{r}}}{r} & \frac{1}{2}(\frac{\partial {{u}_{\theta }}}{\partial z}+\frac{1}{r}\frac{\partial {{u}_{z}}}{\partial \theta }) \\
\frac{1}{2}(\frac{\partial {{u}_{r}}}{\partial z}+\frac{\partial {{u}_{z}}}{\partial r}) & \frac{1}{2}(\frac{\partial {{u}_{\theta }}}{\partial z}+\frac{1}{r}\frac{\partial {{u}_{z}}}{\partial \theta }) & \frac{\partial {{u}_{z}}}{\partial z} \\
\end{matrix} \right] \\
& \\
\end{align}\]
c) Spherical Coordinates:
\[\begin{align}
& [E]=\left[ \begin{matrix}
\frac{\partial {{u}_{r}}}{\partial r} & \frac{1}{2}(\frac{1}{r}\frac{\partial {{u}_{r}}}{\partial \theta }-\frac{{{u}_{\theta }}}{r}+\frac{\partial {{u}_{\theta }}}{\partial r}) & \frac{1}{2}(\frac{1}{r\sin \theta }\frac{\partial {{u}_{r}}}{\partial \phi }-\frac{{{u}_{\phi }}}{r}+\frac{\partial {{u}_{\phi }}}{\partial r}) \\
{{E}_{21}}={{E}_{12}} & \frac{1}{r}\frac{\partial {{u}_{\theta }}}{\partial \theta }+\frac{{{u}_{r}}}{r} & \frac{1}{2}(\frac{1}{r\sin \theta }\frac{\partial {{u}_{\theta }}}{\partial \phi }-\frac{{{u}_{\phi }}\cot \theta }{r}+\frac{1}{r}\frac{\partial {{u}_{\phi }}}{\partial \theta }) \\
{{E}_{31}}={{E}_{13}} & {{E}_{32}}={{E}_{23}} & \frac{1}{r\sin \theta }\frac{\partial {{u}_{\phi }}}{\partial \phi }-\frac{{{u}_{r}}}{r}+\frac{{{u}_{\theta }}\cot \theta }{r} \\
\end{matrix} \right] \\
& \\
& \\
\end{align}\]
resource: ISBN: 978-0-7506-8560-3
Subscribe to:
Post Comments (Atom)
The Matrix are well written. I wonder what type of software you used.
ReplyDelete