Saturday, March 14, 2015
Linearly Elastic Solid
As the name says, linearly elastic solid denote the solid material which there its relation between stress and strain is linear.
We give $T$ the stress tensor and $E$ the strain tensor
$T$ and $E$ both are second-order tensor (9 members each). Therefore ${{T}_{ij}}$ and ${{E}_{kl}}$ denote the member of the tensor where i,j,k,l are $\in \left\{ 1,2,3 \right\}$ and independent of each other.
For linearity relation between $T$ and $E$ ;
\[{{T}_{11}}={{C}_{1111}}{{E}_{11}}+{{C}_{1112}}{{E}_{12}}+....................+{{C}_{1133}}{{E}_{33}}\]
\[{{T}_{12}}={{C}_{1211}}{{E}_{11}}+{{C}_{1212}}{{E}_{12}}+....................+{{C}_{1233}}{{E}_{33}}\]
\[.......................................................\]
\[.......................................................\]
\[{{T}_{33}}={{C}_{3311}}{{E}_{11}}+{{C}_{3312}}{{E}_{12}}+....................+{{C}_{3333}}{{E}_{33}}\]
It involves total of 81 coefficients to do the linear job. This $C$ is the fourth-order tensor where ${{C}_{ijkl}}$ is the member.
The above set of equations can be written as
${{T}_{ij}}={{C}_{ijkl}}{{E}_{kl}}$
However, $T$ and $E$ are proof to be symmetric tensors. The fact that $E$ is symmetric tensor, we can combine the sum of two term such as ${{C}_{1112}}{{E}_{12}}+{{C}_{1121}}{{E}_{21}}$ into $({{C}_{1112}}+{{C}_{1121}}){{E}_{12}}$ and make $({{C}_{1112}}+{{C}_{1121}})$ one coefficient. This combination of two term lead to reduction of coefficients from 81 to 54.
The fact that $T$ is symmetric reduces the coefficient (by reducing number of equations from above set of equation) to 18.
For the simplified set of linear equation, we write
\[\left[ \begin{matrix}
{{T}_{11}} \\
{{T}_{22}} \\
{{T}_{33}} \\
\begin{matrix}
{{T}_{23}} \\
\begin{matrix}
{{T}_{31}} \\
{{T}_{12}} \\
\end{matrix} \\
\end{matrix} \\
\end{matrix} \right]=\left[ \begin{matrix}
{{C}_{11}} \\
{{C}_{12}} \\
{{C}_{13}} \\
\begin{matrix}
{{C}_{14}} \\
\begin{matrix}
{{C}_{15}} \\
{{C}_{16}} \\
\end{matrix} \\
\end{matrix} \\
\end{matrix}\begin{matrix}
{{C}_{12}} \\
{{C}_{22}} \\
{{C}_{23}} \\
\begin{matrix}
{{C}_{24}} \\
\begin{matrix}
{{C}_{25}} \\
{{C}_{26}} \\
\end{matrix} \\
\end{matrix} \\
\end{matrix}\begin{matrix}
{{C}_{13}} \\
{{C}_{23}} \\
{{C}_{33}} \\
\begin{matrix}
{{C}_{34}} \\
\begin{matrix}
{{C}_{35}} \\
{{C}_{36}} \\
\end{matrix} \\
\end{matrix} \\
\end{matrix}\begin{matrix}
{{C}_{14}} \\
{{C}_{24}} \\
{{C}_{34}} \\
\begin{matrix}
{{C}_{44}} \\
\begin{matrix}
{{C}_{45}} \\
{{C}_{46}} \\
\end{matrix} \\
\end{matrix} \\
\end{matrix}\begin{matrix}
{{C}_{15}} \\
{{C}_{25}} \\
{{C}_{35}} \\
\begin{matrix}
{{C}_{45}} \\
\begin{matrix}
{{C}_{55}} \\
{{C}_{56}} \\
\end{matrix} \\
\end{matrix} \\
\end{matrix}\begin{matrix}
{{C}_{16}} \\
{{C}_{26}} \\
{{C}_{36}} \\
\begin{matrix}
{{C}_{46}} \\
\begin{matrix}
{{C}_{56}} \\
{{C}_{66}} \\
\end{matrix} \\
\end{matrix} \\
\end{matrix} \right]\left[ \begin{matrix}
{{E}_{11}} \\
{{E}_{22}} \\
{{E}_{33}} \\
\begin{matrix}
2{{E}_{23}} \\
\begin{matrix}
2{{E}_{31}} \\
2{{E}_{12}} \\
\end{matrix} \\
\end{matrix} \\
\end{matrix} \right]\]
or
\[\left[ \begin{matrix}
{{T}_{1}} \\
{{T}_{2}} \\
{{T}_{3}} \\
\begin{matrix}
{{T}_{4}} \\
\begin{matrix}
{{T}_{5}} \\
{{T}_{6}} \\
\end{matrix} \\
\end{matrix} \\
\end{matrix} \right]=\left[ \begin{matrix}
{{C}_{11}} \\
{{C}_{12}} \\
{{C}_{13}} \\
\begin{matrix}
{{C}_{14}} \\
\begin{matrix}
{{C}_{15}} \\
{{C}_{16}} \\
\end{matrix} \\
\end{matrix} \\
\end{matrix}\begin{matrix}
{{C}_{12}} \\
{{C}_{22}} \\
{{C}_{23}} \\
\begin{matrix}
{{C}_{24}} \\
\begin{matrix}
{{C}_{25}} \\
{{C}_{26}} \\
\end{matrix} \\
\end{matrix} \\
\end{matrix}\begin{matrix}
{{C}_{13}} \\
{{C}_{23}} \\
{{C}_{33}} \\
\begin{matrix}
{{C}_{34}} \\
\begin{matrix}
{{C}_{35}} \\
{{C}_{36}} \\
\end{matrix} \\
\end{matrix} \\
\end{matrix}\begin{matrix}
{{C}_{14}} \\
{{C}_{24}} \\
{{C}_{34}} \\
\begin{matrix}
{{C}_{44}} \\
\begin{matrix}
{{C}_{45}} \\
{{C}_{46}} \\
\end{matrix} \\
\end{matrix} \\
\end{matrix}\begin{matrix}
{{C}_{15}} \\
{{C}_{25}} \\
{{C}_{35}} \\
\begin{matrix}
{{C}_{45}} \\
\begin{matrix}
{{C}_{55}} \\
{{C}_{56}} \\
\end{matrix} \\
\end{matrix} \\
\end{matrix}\begin{matrix}
{{C}_{16}} \\
{{C}_{26}} \\
{{C}_{36}} \\
\begin{matrix}
{{C}_{46}} \\
\begin{matrix}
{{C}_{56}} \\
{{C}_{66}} \\
\end{matrix} \\
\end{matrix} \\
\end{matrix} \right]\left[ \begin{matrix}
{{E}_{1}} \\
{{E}_{2}} \\
{{E}_{3}} \\
\begin{matrix}
{{E}_{4}} \\
\begin{matrix}
{{E}_{5}} \\
{{E}_{6}} \\
\end{matrix} \\
\end{matrix} \\
\end{matrix} \right]\]
Where $C$ is symmetric tensor
Subscribe to:
Post Comments (Atom)
ReplyDeleteAppreciation is a wonderful thing...thanks for sharing keep it up.
VideoPad Video Editor Crack
Sidify Music Converter Crack
MikroTik Crack
AnyMP4 Android Data Recovery Crack
ABBYY FineReader Crack
DiskGenius Professional Crack
MathType Crack
DVDFab Crack
Connectify Hotspot Pro Crack
Tinder Gold MOD APK Crack